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ABSTRACT

In this paper, Adaline Neural Network (ADNN) has been explored to simulate the actual 
signal processing between input and output. One of the drawback of the conventional 
ADNN is the use of the non-systematic rule that defines the learning of the network. 
This research incorporates logic programming that consists of various prominent logical 
representation. These logical rules will be a symbolic rule that defines the learning 
mechanism of ADNN. All the mentioned logical rule are tested with different learning rate 
that leads to minimization of the Mean Square Error (MSE). This paper uncovered the best 
logical rule that could be governed in ADNN with the lowest MSE value. The thorough 
comparison of the performance of the ADNN was discussed based on the performance 
MSE. The outcome obtained from this paper will be beneficial in various field of knowledge 
that requires immense data processing effort such as in engineering, healthcare, marketing, 
and business.
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INTRODUCTION

Artificial Neural Network (ANN) was 
inspired by the biological neuron model. 
ANN consists of interconnected neurons 
with distinctive input and output layer. 
Despite the various development of the 
ANN in many field of studies, ANN 
experience lack of representation during 
learning and retrieval phase. One of the 
unique direction in the work of ANN is the 
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use of the optimal learning system via symbolic rule. Initially, Abdullah (1992) proposed 
logic programming in special case of ANN called Hopfield Neural Network (HNN). 
The proposed network introduced an innovative connection weight by comparing cost 
function and energy function. This pursuit was continued by Sathasivam (2010) where 
this work capitalized special case of logic called Horn Satisfiability. Since then, several 
propositional logical rules were proposed in ANN such as 2 Satisfiability (Kasihmuddin et 
al., 2017), 3 Satisfiability (Mansor et al., 2017) and Random 2 Satisfiability (Sathasivam 
et al. 2020a). The proposed methods played an important role in the emergent of several 
related applications such as Very Large Scale Integration (Sathasivam et al., 2020b), Bezier 
reconstruction (Kasihmuddin et al., 2016), logic mining (Kho et al., 2020) and many more. 
In another development, Alzaeemi et al. (2020) proposed 2 Satisfiability logical rule in 
Radial Basis Function Neural Network (RBFNN) by utilizing the value of the parameters 
in the hidden layers. The comparative study between HNN and RBFNN has been reported 
in (Mansor et al. 2020). All the mentioned logical rule utilizes only the Satisfiable logic 
except in the work of Kasihmuddin et al. (2018) that proposed non-Satisfiable logic. As 
far as the logical rule is concern, the proposed ANN only implemented limited type of 
propositional logical rule. This is due to the redundant nature of the logic that prevent the 
previous studies to produce optimal synaptic weight that corresponds to the goal of the logic. 

Popularized by Widrow and Hoff (1960), Adaline Neural Network (ADNN) is designed 
to cater a simple data processing unit that serves as an intermediate layer between pre-
processing input and input (Sharma et al., 2019). ADNN is a single layer network with 
multiple nodes where each node receives multiple inputs and produces one output. ADNN 
is a self-adaptive algorithm that can automatically modify the current structure in order 
to optimize performance based on previous input (Widrow & Hoff, 1960). This network 
adapts to the input data, learn from the data, and produce the final output based on the 
minimized synaptic weight. This network is based on the Delta rule that utilizes least 
mean squares learning error to minimize the error during the training phase (Widrow & 
Lehr, 1990). Due to the simplicity of the ADNN, this network endured rapid development 
in term of architecture and data processing. Pajares and Jesús (2001) proposed ADNN 
in optimizing the stereovision matching problem. The proposed ADNN managed to 
increase a good decision by learning the optimal weight design when considering relative 
importance of the attribute. In another development, Negarestani et al. (2003) proposed 
ADNN to estimate the environmental parameters of the radon concentration in the soil. 
The proposed ADNN has a good agreement with the similar established work. Recently, 
Sujith and Padma (2020) utilized ADNN to estimate the harmonics for Pulse Width 
Modulation. The proposed ADNN optimized the crucial parameter of the system such as 
load voltage, current and reactive power. In some areas, ADNN became a useful method 
in adaptive signal processing due to the simplicity of the modelling method (Widrow & 
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Stearns, 1985; Wang et al., 2000; Kavak et al., 2005). Unfortunately, the above studies 
only utilize ADNN as a tool rather than self-adaptive ANN by using pre-defined symbolic 
rule. In this case, very limited effort to establish another variant of logical rule embodied 
into ADNN. In this paper, we implemented logical programming in ADNN by embedding 
several established logical rule. Hence, this combination provides a good understanding 
of the ADNN governed by logical structure.

The remaining part of this paper is as follows. In section 1, we explore the logical 
representation that consists of newly proposed logical rule. The proposed logical rule 
consists of both redundant and non-redundant variables.  In section 2, the general structure 
of ADNN is explained in detail. Next, the implementation of various logical rule in ADNN 
is demonstrated. Finally, the performance of different logical rule in ADNN is discussed 
thoroughly and we conclude the paper with some remarks and future work. 

MATERIALS AND METHOD

Logical Representation

Logic programming transformed the knowledge representation into mathematical 
derivation. Logic programming is declarative because this representation requires the user to 
state the desired task while putting minimal emphasis on the underlying process (Somogyi 
et al., 1996). In another perspective, logic programming represent fact both explicitly and 
implicitly depending on the nature of the desired problem. According to Kowalski (1978), 
logic programming is expressed symbolically according the following Equation 1: 

.Algorithm = Logic+Control 		            [1]

In Equation 1, logic signifies the issue of “what” and control explains the “how” which can 
be determined using the method defined by the user. In this case, optimal logic programming 
has to be able to clearly define the end goal that corresponds to the logical statement and 
control the system accordingly (Hamadneh, 2013). In practice, logical representation can 
“communicate” with the user by assigning the logical state for each variable in the logic. 
Hence, listing all the possible logical instance optimize the “control” part by identifying 
the logical inconsistencies that deviates from the goal. 

In this paper, we only consider propositional logical rule where the output consists 
of only bipolar (1 or -1). In this case, the output reads 1 (True) or -1 (False). The goal of 
each logic formulation is to produce only 1 (True) statement. One of the most prominent 
representations of Propositional logic is in Boolean algebra form. Boolean algebra is 
a logical algebra in which symbols are used to describe the complexity of the logical 
representation (Riche, 2011). This representation consists of individual unit called variable 
and connectives (Table 1). Similar to the output of the logical rule, variable is a symbolic 
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unit that can be defined as 1 (True) and -1 (False). The relationship of the variable is define 
by connectives manipulate the behaviour of the problem that leads to the final output (goal). 

Table 1 
List of logic programming connections

Connective Representation
Т True

∧ False

∧ Conjunction

¬ Disjunction

¬ Negation

← Implication

To further illustrate the connection in Table 1, we first describe two logical variables 
A and B  that serve as input and P  as an output P  where { }1,1B∈ − , { }1,1B∈ − and

{ }1,1P∈ − . The variants of the logical rule that relates Aand B  can be shown in Table 
2. Note that, different logical formulations require different logical states which lead to 
P = 1. 

Table 2
List of logical variants

Logical 
Statement

Conventional
Formulation

Propositional 
Formulation

A AND B ( )P A  B= ∧

A OR B ( )P A B= ∨

NOT A P = A P = A

A NAND B P = A . B ( )P A  B= ¬ ∧

A NOR B P = A+ B ( )P A B= ¬ ∨

A EX-OR B ( ) ( )P A B A B= ∧¬ ∨ ¬ ∧

A EX-NOR B ( ) ( )P A B A  B= ∧ ∨¬ ∧

P = A . B
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Since each variable in Ρ is binary in nature, the logical structure can be implemented 
in ANN. In this paper, we will utilize logical structure in Table 2 as a learning rule that 
governs the ADNN model.

Adaline Neural Network (ADNN) 

ADNN consists of single interconnected layer neurons with n inputs and one output. The 
determination of the output is based on the linear combinations of the inputs (Jannati et 
al., 2016). The main feature of ADNN is the ability to be self-adapting algorithm usually 
used for the weights training.

Figure 1. Symbolic illustration of Adaline Neural Network (Raschka, 2015)

Figure 1 shows an ADNN with multiple nodes where each node receives multiple inputs 
and generate one output, y(k). Note that, k  is the sampling time index (k = 0, 1, ...). The 
updating rule of the output is based on the following Equation 2:

0
( ) ( ),       0,1, 2,..., ,

r

i
i

y k b w x k i i r
=

= + − =∑                 [2]

where b, wi , r  are denoted as bias, weight and the order of adaptive linear combiner 
respectively. In ADNN, the activation function must be non-linear (such as sigmoid 
activation function) to ensure nonlinearity of the output. Sigmoid activation will give 
smooth gradient and help to adapt with variety of data (Sharma, 2017). The output 
classification of ( )y k  is based on the following Equation 3: 

                  	                                [3]                                                        

Optimal value of wi is crucial to ensure the input will always approach the optimal ( )y k . 
The training pattern will undergo pre-defined number of iteration until the optimal value 
of were obtained. In this case, the weight updating is carried out by applying Delta rule. 
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Delta rule use in ADNN will evaluate the difference between ( )d k  with the target output 
( )d k , in order to adjust the weight and threshold of the neuron. The error ( )e k  is given 

by Equation 4:

e(k) = d(k) - y(k).                                                  [4]

The value of ( )e k is vital for the change of weight and bias (Equation 5):

( )
( )

1

1

( )

,
i i

i i

w w e k x k i

b b e k

α

α
+

+

= + −

= +
                                  [5]                                                           

where, wi+1 and bi+1  are the new value of weights and bias respectively. α is the 
learning rate that accelerate the searching of optimal value for wi+1and bi+1  where αϵ 
(0, 1). ( )x k i−  is set of activation input at time k . The proposed ADNN is structurally 
different than traditional Hebb Rule since the value of weights is adjusted as the training 
progress. In general, ADNN is based upon an idea that decrement in the value of e k( ) will 
reinforce the input-output connection. By reducing the value of e k( ) , the back-spreading 
from one layer to the other layer can be reduced dramatically. Algorithm 1 shows the step 
based training algorithm for ADNN. 

Algorithm 1: Adaline Neural Network

Step 1: Initialize weights wi with small random value that is not equal to zero (Sivanandam 
& Deepa, 2006). Assign learning rate α.

Step 2: Set activation of input ( ) ( )x k i s k i− = − , for i = 1 to r from Equation (3).
Step 3: With every bipolar training pair conduct Step 4-6.
Step 4: Measure the net input to output unit from Equation (2).
Step 5: Update bias and weights, 1i =  to r from Equation (5) .
Step 6: Calculate the error from Equation (4).
Step 7: Test for stopping condition. Depending the stopping conditions, the number of 
iterations and epochs take place.

Logic Programming in ADNN

Logic programming can play a part as a representational knowledge that can be “learned” 
by ADNN. Apparent knowledge should be held as well as recuperated on the off chance 
that essential. The most thought here is to break the situation into smaller parts and after 
that hunt for logical rules which can demonstrate with a computer. This neuron model is 
oversimplified, and it has substantial computing potential and bipolar in nature. Based on 
Table 2, this could conduct the basic logic operations NOT, OR, and AND, with suitable 
chosen weights and thresholds. Every multivariable combinational function could be 
done using either the NOT and OR, or on the other hand the NOT and AND logical rules. 
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Coherent run this logical rule is one of the perfect ways to clarify the black box model 
of neural network. Neural network is a black box throughout the way that while it would 
approximate any function, studying the structure will not provide any insight into the nature 
of the function being approximated. The poor design practices which unintentionally result 
in logically redundant and may cause an unnecessary increase in network complexity.

The list of logical rules through Table 2 are used to develop logic programming in 
ADNN. These logical rules utilized as bipolar inputs and bipolar targets. The conventional 
ADNN utilizes bipolar { }1, 1−  neuron representation that corresponds to { },TRUE FALSE . 
Figure 2 shows the training process of logical rules can be implemented in ADNN. ADNN 
is capable of performing only a small subset of function known as linearly separable 
(Widrow & Lehr, 1990). 

Figure 2. Flowchart of logic programming in Adaline Neural Network
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With two inputs, ADNN can realize possible bipolar logical rules. Combination of elements 
and network of components can be utilized to perform functions which are not linearly 
separable.

Figure 3 demonstrates the distinctive situation that can be considered when logical 
rule in ADNN configuring the learning rate. However, learning rate will have an impact 
on how successfully ADNN will converge to arrive at the finest possible accuracy. The 
determination value of learning rate in the training process has a significant impact on the 
learning process. The learning rate decides how quickly ADNN is adjusted to the logical 
rule. ADNN was trained with diverse optimizer which is logical rule. For each optimizer 
it was trained with distinctive learning rate between 0 1α≤ ≤  at logarithmic intervals. 
ADNN is trained until it achieves minimum mean square error. According to Smith (2017), 
we can approximate the optimal learning rate by increasing exponentially the learning 
rate at each iteration. In this case, the initial learning rate must be low in order to cater the 
increment of the α.

Figure 3. Symbolic illustration effect of different learning rate (Zulkifli, 2018)

IMPLEMENTATION

Performance Evaluation

In this section, ADNN is evaluated based on mean square error. During the simulation, the 
value of learning rate would be introduced during the learning phase of the logical rule in 
ADNN. The proposed ADNN is compared with logical rule and learning rate.
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Mean Square Error (MSE)

Mean square error (MSE) was used as a standard metric to evaluate the correlation between 
the target value and the net input to the output (Chen et al., 2010). This is supposed to 
minimize average of the squared difference between the estimated value and the target 
value. Least mean square error (LMS) algorithm proposed by Widrow and Hoff in 1959, is 
an adaptive algorithm. The LMS algorithm is relatively straightforward and LMS also an 
example of supervised training. The supervised training that uses MSE cost function may 
use formal statistical methods to determine the confidence of a trained model. The value 
can be used to calculate the confident interval of the output of the network (Equation 6).

{ } { } { }1 1 2 2, , , ,..., , .q qp t p t p t                                 [6]                                                

Here, ( )ip y k=  is an input to the network and it  is the corresponding target output. The error 
is calculated as the difference between the target output and network output (Equation 7). 

2( ( )) .iMSE t y k= −                                               [7]                                               

The LMS algorithm will adjust the weights and bias of the ADNN to minimize the mean 
square error which is the difference between the target output t , and the net input iny . The 
mean square error performance index for ADNN is quadratic. The performance index will 
either have a global minimum, a weak minimum or no minimum depending on characteristic 
of the input vector (Asha & Anuja, 2010).

Experimental Setup

This research based on simulated data set, where the initial neuron state was generated 
randomly. Based on Table 2, the variant of the logical rule would have applied in ADNN 
with several conditions that would take place where the learning process may run 50 epochs 
and 4 number of iteration. As stated in Table 3, a small random value of initial weights and 
bias was chosen because this may impact the error factor (Sivanandam & Deepa, 2006). 
There was no optimal number of iteration. In order to avoid overfitting, need to iterate until 
the error does not significantly decrease. The learning rate is hyperparameter may control 
how much the model can react to the evaluated error each time the weight is updated. The 
output from logical rules in ADNN would be compared with the target output until the 
weight change came to a small value.

RESULT AND DISCUSSION

Efficiency can be demonstrated by examining the value of MSE produced by ADNN 
with different logical rule. In term of stability, learning rate can be a metric to examine 
the stability of the proposed logical rule. Figures 4-8 reveal the MSE result for logical 
rule in ADNN with different value of learning rate respectively. The MSE was minimized 
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based on the number of registered epochs. In order to make a fair comparison among all 
logical rule, the simulations are carried out until 50 epochs. As shown in Figure 4, logical 
rule in ADNN such as OR, AND, NAND, and NOR take fewer number of epoch during 
the learning phase to minimized the error. Conventional ADNN that employed a higher 
number of epochs during the learning phase might come to a point where the network 
became over-adapted to training data and losses performance in terms of generalization 
such as in Figure 6-8. Based on the value of MSE, the solution in NAND-Function in 
ADNN revealed the lowest error compared to the other logical rule. Based on Figure 5, 
the value of learning rate α = 0.01 is lower compared to Figure 4 value of learning rate α 
= 0.1. The value of learning rate will determine how quickly or slowly ADNN can learn 
from the problem. EXOR-Function and EXNOR-Function in Figure 5 showed the lowest 
learning rate but the training process took significantly longer to train and the error was 
not well minimized. Very small learning rate will not only be time consuming but will 
increase the probability for the ADNN to stuck in local minima MSE value (Goodfellow et 
al., 2016). Nevertheless, another four logical rules in ADNN revealed that the network took 
a shorter time to train and the error was optimally minimized. The result demonstrates that 
the training algorithm is precisely designed to find an approximate solution to minimize 
errors although there is no guarantee that the proposed ADNN will always arrive to the 
optimal solution. Hence according to the experimental value, we obtained α = 0.1 as an 
optimal learning rate.

Table 3
Table of parameters for logical rules in ADNN

Parameter Value

Initial Weight ( iw ) 0.1
Bias (b) 0.1

Stopping Criteria 1. Number of iteration 4=
2. Number of Epoch 50≤

Learning Rate

Number of Layer Single Layer

Neuro State Sᵢ = {-1, 1}
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Figure 5. MSE for OR, AND, NAND, NOR, EXOR and EXNOR Function in ADNN with α = 0.01

According to Figures 4-8, the lowest MSE value that governs the ADNN is NAND 
function. In the case of P = 1 , NAND function works effectively in producing the final 
neuron state P = 1. In this case, ADNN produces the least MSE value in order to achieve the 
optimal weight for the output neurons. This is considered as an interesting result because this 
is the first logical that utilized redundant variable and being implemented in ANN. This is a 
major breakhthrough over the result obtained by Kasihmuddin et al. (2017) that considered 
the redundant logical with P = 1 as an outcome. As of simple propositional logical rule 

Figure 4. MSE for OR, AND, NAND, NOR, EXOR and EXNOR Function in ADNN with α = 0.1
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Figure 7. MSE for OR, AND, NAND, NOR, EXOR and EXNOR Function in ADNN with α = 0.3

such as OR and AND had converge effectively and has a good agreement with the work 
of Mansor et al. (2020) that used similar logical rule. The proposed ADNN with NAND 
logical rule is shown to be more effective than the work of Alzaeemi et al. (2020) because 
ADNN incorporated with logical rule does not requires any complex hidden layer and 
specialized parameters where Alzaeemi et al. (2020) presented 2SAT logic programming 
in Radial Basis Function Neural Network. The proposed ADNN also does not require 
any rigid cost function that leads to 1P =  and computational clause checking. Hence, 

Figure 6. MSE for OR, AND, NAND, NOR, EXOR and EXNOR Function in ADNN with α = 0.2



Logic Learning in Adaline Neural Network

297Pertanika J. Sci. & Technol. 29 (1): 285 - 300 (2021)

Figure 8. MSE for OR, AND, NAND, NOR, EXOR and EXNOR Function in ADNN with α = 0.4

parameter tuning is required to reduce the error accumulation for other logical rule such 
as EXOR and EXNOR. ADNN is tends to converge to suboptimal weight when dealing 
with EXOR and EXNOR due to the structure of the clause involved. Although the value of 
error is high, the final output of the neuron is consistently 1P = . In practice, the training 
of EXOR and EXNOR can be further optimized by implementing accelerating algorithm 
such as Metaheurictics Algorithm. The limitation of logic programming in ADNN are the 
logical rule and the learning rate depending on the complexity of the learning process.

CONCLUSION

The primary aim for logic programming in ANN is to create flexible ANN that can govern 
both non-redundant and redundant logical rule. In this paper, the implementation of various 
logical rule in ADNN is proposed. The result obtained demonstrates the effectiveness of 
ADNN in governing redundant logical rule. This study has successfully uncovered the best 
logical rule that can be governed in ADNN with the lowest MSE value. In this case, NAND 
has been observed to has the lowest MSE value which leads to P = 1 with regards to other 
redundant logic. Hence, this profound logical rule is only a tip of the iceberg in creating ANN 
that is governed by logical rule. For future work, ADNN can utilize the non-differentiable 
signum function for non-linearity feature or Madaline network. In this network, multiple 
unit of ADNN in parallel will be utilized to process the training data. Despite the success 
by the proposed paradigms, robust and continuous efforts are needed especially on the 
complexity and application of these paradigms to obtain more feasible solutions.
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